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 Reflections on Reflection in a
 Spherical Mirror

 Peter M. Neumann

 1. ALHAZEN'S PROBLEM. There is an old question in optics that has been

 called Alhazen's Problem: given a spherical mirror and points A, B in space, how

 can a point P on the mirror be found, where a ray of light is reflected from A to

 B? Since P must lie in the plane containing A, B and the centre of the sphere,

 this is really a two-dimensional problem: given a circular mirror and points A, B in

 its plane, find the point on the circle where a ray of light is reflected by the mirror

 from A to B. It is this version of the problem that we shall discuss here. Dorrie [1]

 refers to it as Alhazen's Billiard Problem for reasons which are not far to seek. The
 name Alhazen honours an Arab scholar Ibn al-Haytham who flourished 1000 years

 ago. The problem itself can be traced further back, at least to Ptolemy's Optics

 written some time around AD 150. A charming account, full of interesting historical

 and bibliographical pointers, has been published by John D. Smith [8].
 If the mirror is a complete sphere or circle then the problem makes physical

 sense only if A, B lie on the same side-both inside as in Figure 1, or both outside
 and visible to each other. Typically there are two or four reflection points
 (Drexler & Gander [2] discuss this further). Various methods for finding them are
 described in [1], [8] and references cited there. Most describe P as the point of
 intersection of the mirror with an explicitly given hyperbola or cubic curve. It

 seems, however, that the question whether a reflection point can be found by
 classical Ruler & Compass methods has not been answered before-perhaps it has
 not even been asked.

 Figure 1

 Theorem. Let F be a circle and let A, B be points in its plane. In general there is no
 ruler and compass construction to find a point P on F at which a ray of light from A is

 reflected to B.

 To understand this theorem one first needs to know precisely what is meant by
 a ruler and compass construction. Although it is widely known and loved the
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 theory is sketched in the next section. But only sketched: for details the reader is

 referred to any of [1], [3], [4], [5], [6], [9]. One also needs to know what is intended

 by those cautious words 'in general'. In the first instance they simply mean that

 there exist points A and B such that P cannot be found by a ruler and compass

 construction whose initial data consist of F, A, B. Of course there are circum-

 stances under which there is such a construction-for example, if A, B lie

 equidistant from the centre of the circle then P can be obtained as one of the

 points where F meets the perpendicular bisector of AB. Going considerably
 deeper, the words 'in general' mean that only in very special cases does there exist
 a ruler and compass construction to find P from the data. We shall return to this

 point at the end of the paper.

 2. RULER AND COMPASS CONSTRUCTIBILITY. Briefly, a ruler and compass

 construction is a process which, in our context, begins with F, A, B as known. Each

 step of the construction consists of one of the following: drawing the straight line
 through any chosen pair of already known points; drawing the circle whose centre
 is a known point and which passes through another known point; identifying a new

 point as the intersection of two known lines, a known line and a known circle, or
 two known circles. To prove theorems about constructibility we move from geome-

 try to the algebra of cartesian coordinates and use a theory that is nowadays taught
 as part of second- or third-year university courses in abstract algebra, namely the

 theory of fields [3], [6], [9]. What it tells us in the context of Alhazen's Problem is
 this. Take the centre of F to be (0, 0), take its radius to be r, and take A, B to be

 the points (a1, a2) and (b1, b2) respectively. Call a real number constructible if,
 starting from the numbers r, a1, a2, b1, b2, it can be obtained by a finite number of

 the operations +, -, X, ., xF. It is important that a number is to be called
 constructible only if it can be obtained by the usual arithmetical operations
 together with extraction of square roots. Cube roots, for example, are not avail-
 able. The general theory tells us that if, starting from the initial data F, A, B there
 is a ruler and compass construction for the point (x, y), then x and y must be
 constructible in the sense just defined. It also tells us the converse, but that is not
 relevant here.

 As has already been mentioned, we analyse constructibility by using the theory
 of fields. For us it is not necessary to consider the general abstract theory.
 Subfields of the field of all complex numbers suffice. Thus we may take a field to
 be a set of complex numbers that contains 0 and 1 and is closed under the usual
 arithmetical operations +, -, X, . . Recall that if F, K are fields and F c K

 then K may be thought of as a vector space over F. The degree IK: Fl of K over F
 is defined to be dimF(K), the dimension of K as a vector space over F. One of the
 most important facts about degree is that it behaves multiplicatively. The theorem
 ([3, Theorem 5.1.1], [6, Lemma 31], [9, Theorem 4.2]) which many students
 nowadays call the "Tower Theorem" states that if F, K, L are fields and F C K C L

 then IL:Fl = IL:KI x IK:Fl.
 Define Fo to be the field Q(r, a,, a2, bl, b2) of all those real numbers that can

 be obtained from the radius of F and the coefficients of A and B by the rational
 operations +, -, X, . We shall call a field F an iterated quadratic extension of

 Fo if there is a sequence of fields Fo C F1 c c Fk such that Fk = F and
 IFi+1 FiI = 2 for 0 < i < k - 1. Using induction and the "Tower Theorem" one
 sees that IFk : Fo I = 2k, that is, the degree of an iterated quadratic extension is a
 power of 2. The relevance of this is that if a point (x, y) is ruler and compass
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 constructible from F, A, B then there must be an iterated quadratic extension F

 of Fo such that x, y E F; compare [3, p. 230], [6, Appendix 3], or [9, Theorem 5.2].

 3. PROOF OF THE THEOREM. We take F to have radius 1 so that its equation

 iS X2 + y2 = 1, we take A := (1, 6), B = -, 2), and P := (xl, yl).

 Lemma 1. X4 - 2x3 + 4x2 + 2x1-1 = 0.

 Proof: Let's begin with quite a general treatment following that of John Smith in

 [8]. Thus A, B, P are represented by complex numbers a, b, z respectively. The
 condition that angles APO and OPB are equal (where 0 is the centre of F) is that
 arg ((a - z)/z) = arg (z/(z - b)). This requires that (a - z)(b - Z)/z2 be real,
 that is, that (a - z)(b )(b - z)/z2, where bar denotes complex
 conjugation. Rearrangement of this equation yields the condition aibz2 - abz2 2
 ((a + b)z - (a + b)f))zz. Since zz = 1 this reduces to

 Ab z2 - abz2 = (a + b)z - (a + b)f, (1)

 which, after a factor -1 has been cancelled from both sides, becomes a real
 quadratic equation in the coordinates x, y of P. Eliminating y between this and

 x2 + y2 = 1 we obtain a quartic equation for x.
 For our special configuration, since a = 6(1 + - ), b= (-1 + -1),

 and P is represented by x1 + Yi - 1), the Equation (1) becomes x1yl - 2x1
 Yi = 0. Eliminating Yi from the equation X2 + y2 = 1 we find that X4 - 2x3 +
 4X2 + 2x1 -1 = 0, as the lemma states.

 It will turn out to be helpful to know that this equation is irreducible over ?,
 that is to say, that the polynomial cannot be factorised in a non-trivial way into
 factors with rational coefficients.

 Lemma 2. Let f(x) := x4 - 2x3 + 4X2 + 2x - 1. Then f(x) is irreducible in the
 polynomial ring Q[x]. Moreover, two of the roots of the equation f(x) = 0 are real
 and the others form a complex conjugate pair.

 Proof: By Gauss's Lemma (see [3, p. 160], [6, Theorem 23], or [9, p. 19]), if f(x)
 were reducible in Q[x] then it would have factors with integer coefficients. Clearly
 the leading coefficients can be taken to be 1, and the constant coefficients are + 1.

 Since f(1) = ff - 1) = 4, neither (x - 1) nor (x + 1) is a factor. Therefore the only
 possible factorisation is of the form

 X4- 2x3 + 4X2 + 2x - 1 = (X2 + cx + 1)(x2 + dx-1)

 where c, d E Z. From the coefficient of x3 we see that c + d =-2; similarly,
 from the coefficient of x we find that - c + d = 2. Therefore c has to be -2 and

 d has to be 0. But then f(1) = 0, which is not true. Thus f(x) is irreducible.
 Since ff - 1) > 0, f(O) < 0, and f(1) > 0 there are at least two real roots, one

 between -1 and 0 and another between 0 and 1. Now f"(x) = 12x2 - 12x + 8 =
 3(2x - 1)2 + 5, and so f"(x) ? 5 for all real values of x. Therefore f'(x) is strictly
 increasing, and the equation f'(x) = 0 has at most one real root. Between any two
 roots of f(x) = 0 there lies a root of f'(x) = 0, and it follows that f(x) = 0 has at
 most two real roots. Thus it has exactly two real roots. Its non-real roots form a
 complex conjugate pair because the coefficients of the equation are real.

 The nature of the roots is unimportant for our main argument (it will be
 exploited in Section 4), but the significance of irreducibility is as follows. Let
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 X1, X2, x3, X4 be the four roots of f(x) = 0. Since the equation is irreducible, one

 of them lies in an iterated quadratic extension of Q if and only if they all do (see

 [3, Theorem 5.3.4], [6, Theorem B3], or [9, Prop. 10.2]). It follows that if there were
 a ruler and compass construction for P then the splitting field of f(x), that is, the

 field Q(X1, X2, x3, X4) generated by all four roots, would have to be an iterated
 quadratic extension of Q. In particular, its degree would be a power of 2 (in fact,

 its degree would have to be 4 or 8-but we do not need to know this). Our strategy

 is to prove that this is not so by showing that the degree IQ(x1,x2, x3, x4): Q1 is
 divisible by 3.

 Lemma 3. Define t1 xx2 + x3x4, t2 :=X1X3 + X2X4 t3 :=X1X4 + X2X3, and
 g(t) = t3 - 4t2 - 16. Then t1, t2, t3 are the roots of the equation g(t) = 0. Moreover,
 this equation is irreducible.

 Proof: To find the cubic polynomial whose roots are t1, t2, t3 we calculate their
 elementary symmetric functions:

 E ti = xixi = 4;

 Etitj EX7XjXk = (EXi)(EXiXkXk) - 4xlX2X3X4 = 0;

 t1t2t3 = Exxxx + EXiX]Xk=- =16.

 Therefore t1, t2, t3 are the roots of the equation t3 - 4t2 - 16 = 0, as the first
 assertion of the lemma states. Setting u := t we find that u3 - 2u2 - 2 = 0. If
 the polynomial u3 - 2u2 - 2 were reducible in the polynomial ring Q[u] then by
 Gauss's Lemma it would have to be factorisable in 2[u]. Since one of its factors
 would have to be linear, it would have to be divisible by u + 1 or u + 2. But none

 of 1, - 1, 2, -2 is a root. Therefore u3 - 2u2 - 2 is irreducible in Q[u], and it
 follows immediately that t3 - 4t2 - 16 is irreducible in Q[t], as required.

 The proof of the theorem may now be completed in a few lines. It follows from

 Lemma 3 that Q(t1), the field generated by tl, has degree 3 over Q (see [3, ?5.3],
 [6, Theorem 28], or [9, Prop. 4.3]). Then, since Q c Q[tJ] c Q[x1, x2, X3, X4], by
 the "Tower Theorem", IQ(x1, x2, x3, x4): Q1 is divisible by 3. Thus the splitting
 field of x4 - 2x3 + 4X2 + 2x - 1 is not an iterated quadratic extension of Q, and
 it follows (see the discussion preceding Lemma 3) that with our initial data the
 reflection point P cannot be constructed by ruler and compass.

 4. COMMENTARY. NOTE 1. The classical proofs of the impossibility of squaring
 circles, duplicating cubes, and trisecting angles do not really require any Galois
 theory. They require only the beginnings of the theory of fields. Thus, for example,
 they are treated in Chapters 5 and 6 of [9], a book that has 19 chapters in all. By
 way of comparison, note that in the paragraph preceding Lemma 3 a result that
 appears in Chapter 10 of [9] has been used. It may well be that the argument can
 be simplified. Nevertheless, Alhazen's Problem seems to lie just a little deeper than
 the classical problems.

 NOTE 2. The first section of this paper ends with a promise of further discussion
 of the words 'in general' that occur in the statement of the theorem. To keep that
 promise we briefly sketch some rather more sophisticated ideas.

 526 REFLECTION IN A SPHERICAL MIRROR [June-July

This content downloaded from 
��������������192.76.8.65 on Mon, 07 Mar 2022 16:36:52 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Since the polynomial x4 - 2x3 + 4X2 + 2x - 1 is irreducible over Q the de-

 gree of its splitting field is divisible by 4. We have shown that this degree is also

 divisible by 3, and therefore it is a multiple of 12. The Galois group of the

 polynomial is a subgroup of Sym (4), the group of all permutations of the four roots
 x1, x2, X3, X4, and, by the so-called Fundamental Theorem of Galois Theory, its

 order is the same as the degree of the splitting field. Therefore the order of the
 Galois group is divisible by 12. By the second assertion of Lemma 2, complex

 conjugation, which is certainly a member of the Galois group, acts as a transposi-
 tion fixing two of the roots and interchanging the other two. It follows immediately
 that the Galois group is in fact Sym (4).

 Consider now the case where A, B are points whose coefficients a1, a2, b1, b2
 are algebraically independent transcendental numbers, and let G be the Galois
 group of the quartic polynomial for the x-coefficient of P. A tool known as

 'specialisation' in algebraic geometry tells us that there is a homomorphism from G

 onto the Galois group that arises in the case treated in the main proof, where the

 points are (6, 6) and (- 2,-)- Consequently G must also be Sym (4), and so also
 for this 'totally transcendental' case Alhazen's problem is insoluble by ruler and

 compass.

 This means, of course, that if Alhazen's Problem for the points A, B is soluble
 by ruler and compass then the coefficients cannot be algebraically independent.

 Now four real numbers r1, r2, r3, r4 are not algebraically independent transcenden-

 tals if and only if there is a polynomial equation p(r1, r2, r3, r4) = 0 with integer
 coefficients. The zero-set of such an equation, being a 3-dimensional hyper-surface
 in R4, is a null set in the sense of Lebesgue measure theory. There are only
 countably many polynomial equations with integer coefficients and the union of a

 countable family of null sets is a null set. It follows that the set of pairs of points

 A, B for which Alhazen's Problem does have a ruler and compass solution is a null

 set. In other words, if A, B are chosen randomly then the probability that the
 reflection point P can be constructed is 0. In fact, from Hilbert's Irreducibility

 Theorem [7, Ch. 3] one can deduce that even if the coordinates a1, a2, b1, b2 of the
 points A, B are restricted by, say, being required to be rational numbers, they have
 to satisfy very strong conditions if the Galois group of the equation is to be a

 proper subgroup of Sym (4), as it must be if P is to be constructible with ruler and
 compass. That is what was meant by the remark that only in very special cases does
 there exist a ruler and compass construction for P.

 ACKNOWLEDGMENTS. I am very grateful to my wife Sylvia, to Anne Watson and to John Smith for

 introducing me to Alhazen's Problem, for useful and encouraging discussions, and for constructive

 comment on the first draft of this paper.
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 DePugh recalls a sermon he once heard at a church-ful of German Mysticks. "It might

 have been a, lecture in Mathematics. Hell} beneath our feet, bounded-Heaven, above our
 pates, unbounded. Hell a collapsing Sphere, Heaven an expanding one. The enclosure of
 Punishment, the release of Salvation. Sin leading us as naturally to Hell and Compression, as
 doth Grace to Heaven, and Rarefaction. Thus-'

 Murmurs of, "4Thus'?"

 --may each point of Heaven be mappd, or projected, upon each point of Hell, and vice
 versa. And what intercepts the Projection, about mid-way (reckon'd logarithmickally)
 between? why, this very Earth, and our lives here upon it. We only think we occupy a solid.
 Brick-and-Timber City -in Reality, we live upon a Map. Perhaps even our Lives are bkt
 representations of Truer Lives, pursued above and below, as to Philadelphia correspond both
 a vast Heavenly City, and a crowded niche of Hell, each elemcnt of one faithfully mirror'd in
 the others."

 There are a Mason and Dixon in Hell, you mean?" inquires Ethelmer, "attempting
 eternally to draw a perfect Arc of Considerably Lesser Circle?"

 "Impossible," ventures the Revd. "For is Hell, by this Scheme, not a Point, without
 Dimension?"

 "I'ndeed. Yet, suppose Hell to be almost a Point," argues the doughty DePugh, already
 Wrangler material, "-they would then be inscribing their Line eternal, upon the inner
 surface of the smallest possible Spheroid that can be imagin'd, and then some."

 "More of these...," Ethelmer pretending to struggle for a Modifier that will not offend
 the Company, "curious Infinitesimals, Cousin.-The Masters at ny Purgatory are bewitclVd
 by the confounded things. Epsilons, usually. Miserable little,"-Squiggling in the air, "sort of
 things. EhW?

 "See them often," sighs DePugh. "this Session more than ever.'
 "What puzzles me, DeP., is that if the volume of Hell may be taken as snall as you ike,

 yet the Souls therein must be ever smaller, mustn't they,-there being? by now, easily millions
 there?"

 4"Aye, assuming one of the terms of Damnation be to keep just enough of one's size and
 weight to feel oppresively crowded,-taking as a model the old Black Hole of Calcutta, if
 you like,-the Soul's Volume must be an Epsilon one degree smaller,-a Sub-epsilon."

 "'The Epsilonicks of Damnation.' Well, well. There's my next Sermon,' remarks Uncle
 Wicks,

 (1 observe," Tenebrw transform'd by the pale taper-light to some beautiful Needlewoman

 in an old Painting, "of both of you, that your fascination with Hell is match'd only by your
 disregard of Heaven. ;Why should the Surveyors not be found there Above,"-gesturing with
 her Needle, a Curve-Ensemble of Embroidery Floss, of a nearly invisible gray, trailing after,-
 in currents rais'd by Talking, Pacing, Fanning, Approaching, Withdrawing, and whatever else
 there be to indoor Life,-"drifting about, chaining the endless airy Leagues, themselves
 approaching a condition ot pure Geometry?'

 "Tho' for symmetry's sakej interposes De Pugh, "we ought tv say, almost endless.}
 "Why,"whisp ers Brw, "whoever said anything had to be symmetrickal?" The Lads, puzzl'd,

 exchange a quickLook.

 Thomas Pynchon, Mason andDixon, Henry Hot and Company, Inc., 1997, p. 482

 Contributed by William Mueller, University of Arizona, Tucson, AZ
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